Copperbelt geology Print this page


The Katanga Region in DRC is rich in copper, cobalt and uranium deposits.

The geology of southeastern Democratic Republic of Congo (DRC) and Zambia is characterised by several Precambrian orogenic belts among which the Kibaride, Irumide and Lufilian belts. The copper, cobalt and uranium deposits in Katanga are more specifically constrained in the Lufilian belt, running as an arcuate structure across the DRC-Zambian border.

The outcropping rocks are composed from north to south of Neoproterozoic detrital and carbonate formations, magmatic inliers (Domes region, northern Zambia) and metamorphic complexes.

These rocks were folded and thrusted during the Lufilian orogeny (ca. 550 Ma) resulting from the amalgamation of the Congo and Kalahari cratons.

The lithology in the Lufilian belt, in Katanga and northern Zambia, reveals the presence of a Palaeoproterozoic basement underneath a Neoproterozoic cover, the Kundelungu Supergroup.

Geological map of Katanga
Simplified geological map of the southern part of the Katanga province (modified after François, 1974).


The Lufilian fold and trust Belt is at the center of the tectonic evolution of Katanga.


The rifting phase and ocean evolution during which the Kundelungu Supergroup was deposited was followed by a phase of compression resulying in subduction of the ocean crust and collision between the Congo and Kalahari cratons. The Lufilian Orogeny refers to the collisional event which marked particularly the Lufilian Belt and occurred ca. 550 Ma ago. It affected, in the Lufilian and northern Zambezi Belts, the entire Katangan Supergroup, which endured deformation and involved the basement, which was partly reworked. This orogen marked the landscape either in Katanga and in Zambia. Different deformation structures can be distinguished and are classified in the paragraph below.

Lufilian orogenic zoning

De Swardt and Drysdall (1964) identified three structural zones (i) the Outer Lufilian corresponding to the fold-and-thrust-belt part mainly located in Katanga, (ii) the Middle Lufilian which is characterised by the Domes area, mainly in northern Zambia and (iii) the Inner Lufilian which encompasses a southern synclinorium of Katangan cover, located in southern Zambia. A more complete classification was proposed by Unrug (1988), who defined five tectonic domains associated with the Lufilian belt from north to south (from DRC to Zambia):

Tectonic map of Katanga
Tectonic map of Katanga. After Porada, 1989.
  • [ KA ] The Katangan « Aulacogen » or « Golfe du Katanga », acted as the foreland during the northward thrusting in the external zone of the LB;
  • [ I ] The external fold-and-thrust belt. This domain is marked by the piling up of nappes (Kolwezi, Mamfwe area…). The Mines Subgroup deposits are constricted between two thrust horizons. The roof thrusts are generally folded.
    In Katanga, a tectonic breccia separates the Mwashia from the Roan group (the allochthonous Mine Subgroup) (Porada and Berhorst, 2000). It would indicate that the Mwashia and Kundelungu were as well displaced.;
  • [ II ] The Domes area, which is represented by several pre-katangan basement inliers;
  • [ III ] The Synclinorial belt. The sediments of the synclinorial belt are poorly exposed, but define large fold structures at a low metamorphic grade;
  • [ IV ] The Katanga high. This domain is poorly known but would correspond to the opposite active continental margin of an “Angola plate”(Porada, 1989).


A major southward dipping thrust contact separates the HP Katangan metamorphic assemblages located south to southwest of the Domes area and other MP to LP metamorphic complexes located north of the Domes area (Kampunzu and Cailteux, 1999).

The grade of regional metamorphism increases from prehnite-pumpellyite facies in the northern boundary of the LB (Katanga, Congo), up to medium-pressure amphibolite facies metamorphism in the southern part of the copperbelt, near the domes area (northern Zambia) (Ramsay and Ridgeway, 1977, concerning Zambia, Lefebvre and Patterson, 1982, concerning Katanga). High pressure eclogites and whiteschists occur south of the Domes area (Vrana and Barr, 1972; Vrana et al., 1975; Cosi et al., 1992).


The Katanga Region in DRC is rich in copper, cobalt and uranium deposits.

Katanga Supergroup

The sediments in the Lufilian belt and its foreland were deposited during the Neoproterozoic, on a Palaeo- to Mesoproterozoic basement. The Katangan sediments started to be deposited in an intra-cratonic rift (Porada and Berhorst, 2000; Unrug, 1988) or in an epicontinental marine embayment (Jackson et al., 2003). The underlying pre- Katangan basement is poorly studied in Katanga and what is known in northern Zambia has been documented by Key et al. (2001) and Rainaud et al. (2002). These sediments were deformed during the Lufilian orogeny (ca 560 – 550 Ma; Cahen et al., 1984; Kampunzu and Cailteux, 1999; Porada and Berhorst, 2000). The Lufilian fold-and-thrust belt and its foreland are bordered to the west by the Mesoproterozoic Kibaran belt and to the east by the Paleoproterozoic Bangweulu block.

The Katanga Supergroup consists of a 5 to 10 km-thick sequence that can be subdivided into three groups based on two regionally extensive diamictites (Figure 5). From the bottom to the top, the Katanga Supergroup is divided into the Roan, the Nguba and the Kundelungu Groups (Cailteux et al., 2005). Sedimentation of the Katanga system started in a continental Roan rift basin after ~880Ma (Armstrong et al., 2005), with a basal conglomerate (Cailteux, 1994). The Roan is divided into four subgroups, i.e. the R1 to R4 Subgroups. The R1 Subgroup, known as the “roches argilo-talqueuses (R.A.T.)”, consists essentially of massive or irregularly stratified detrital formations with hematite present as authigenic plates and red pigment, attesting to the primary oxidising conditions (Cailteux, 1994).

Stratigraphy of Katanga
Stratigraphy of Katanga. After Dewaele et al., 2006.

Towards the contact with the R2 (Mines Subgroup), there are indications that sedimentation took place in an evaporitic environment. The sedimentary transition to the Mines subgroup is at certain localities continuous, whereas at other localities a tectonic breccia developed at the contact. The tectonic breccia formed during detachment of the Mines Subgroup, which was aided by fluidisation of evaporitic material, probably present near the top of the R.A.T. subgroup (Cailteux and Kampunzu, 1995). The importance of salt tectonics to explain the large observed breccia bodies in the Lufilian belt is further stressed by Jackson et al. (2003). The Mines Subgroup (R2) is a carbonate unit that contains the richest stratiform copper-cobalt mineralisation, which occur at two different stratigraphic levels.

The overlying R3 (Dipeta Subgroup) is subdivided in four formations, each characterised by predominantly argillaceous and siliciclastic beds at the base and by predominantly carbonate beds at the top (Cailteux, 1994). The transition to the overlying Mwashya Subgroup is again marked by a tectonic breccia which developed at the contact. The Mwashya was deposited between 760 and 735Ma (Master et al., 2005). The continuous stratigraphic sequence for the Roan group, as proposed by François (1974) and Cailteux (1994), is contested by some authors. Porada and Berhorst (2000) agree that the R.A.T. was deposited on the pre-Katangan basement, but they believe that the overlying Mines, Dipeta and Mwashya subgroups form a platform facies association, which became a Copperbelt-type tectonostratigraphical succession through the development of foreland propagating thrust faults. Wendorff (2000a+b, 2005) does not interpret the brecciated contacts as of tectonic origin. He proposed they should be called conglomerates that were derived from erosion of advancing thrust sheets during the Lufilian orogeny. The R.A.T. and the Dipeta Groups are olistostromes, deposited at the border of the developing Lufilian orogen (Wendorff, 2002a+b, 2005).

In contrast to the disagreement about the stratigraphy of the Roan, all authors agree that sedimentation of the Nguba group started with the deposition of a diamictite (the ‘Grand Conglomérat’) that likely formed part of the Sturtian glacial deposits (Kampunzu et al., 2005) (Table 1). The ‘Grand Conglomérat’ thickens towards the north (François, 1974) and is at least observed as far north as Pweto, which is a town to the north of Dikulushi (Cahen, 1954).

The Likasi Subgroup, with at its base the ‘Grand Conglomérat’, contains a mixture of shale and dolomite in the south and a lateral facies change towards pure shale in the north of the Kundelungu basin (François, 1974; Batumiké et al., 2006). The Kakontwe limestone, in the middle of the Likasi Subgroup, is only observed in the south, towards the Lufilian belt. This limestone formation could be a cap carbonate, confirming the interpretation of the ‘Grand Conglomérat’ as a glacial tillite (Porada and Berhorst, 2000). The Monwezi Subgroup was deposited towards the end of the Nguba and consists of more detrital lithologies, with relatively thin arkose layers in the north and thick, slightly carbonatised pelites and fine sands in the south (François, 1974; table 1). Transition to the overlying Kundelungu Group is again marked by a diamictite (the ‘Petit Conglomérat’) that forms part of the Kalule Subgroup. This conglomerate layer could have been deposited during the Marinoan-Varanger ice age.

The Kalule Subgroup is similar to the Likasi Subgroup, since it also contains a thin cap carbonate (the ‘Calcaire Rose’) overlying the ‘Petit Conglomérat’. The Kalule Subgroup becomes more detrital towards its top, with the deposition of dolomitic siltstones, sandy shales and pink oolitic limestone. The ‘calcaire rose’ is, unlike the Kakontwe limestone from the Likasi Subgroup, continuous from the south to the north, with a layer thickness of around 5m (François, 1974). The Kiubo Subgroup overlies the Kalule Subgroup and consists of sandstones and shales (Cailteux et al., 2005). The top of the Kundelungu group is formed by the Plateau Subgroup that consists of shales and arkoses.

Historically, the mineralized sections of the R.A.T. and the Mines Subgroup have been subdivided in different sections based on their appearance (e.g. François, 1974). The R1 Sub-group forms the so-called R.A.T. rouge. The Mines Subgroup (R2) has been subdivided into three formations that are subdivided into different niveaus. Formation R2.1 is subdivided into niveau R2.1.1 or the so-called R.A.T.gris, in niveau R2.1.2 that consists of subniveau R2.1.2.1 or DStrat and subniveau R2.1.2.2 or R.S.F. and niveau R2.1.3 or the R.S.C. The formations R2.2 and R2.3 are also called S.D. and C.M.N, respectively.


In the Lufilian Belt, the boundary between the basement and the katangan succession is marked by the Nchanga Granite (ca. 877 +/- 11 Ma) unconformably overlied by conglomerates, arkoses and quartzites of the Lower Roan Group.

The basement in the Lufilian belt, overlaid by the Katangan Supergroup, consists of the “lower basement”, which are rocks of Eburnean age (granites, gneisses and schists). In Zambia, directly covering the basement and prior to the Katanga deposition, the “upper basement”, the Muva Supergroup consists mainly of schists, quartzites, quartz-muscovite schists. It is encountered in the Lufilian Belt but limited to the Kafue Anticline, in the centre of the Luswishi Dome and locally in the Chingola area. This group was deformed and metamorphosed within the Irumide Belt during the Kibaran cycle (1350- 1100 Ma).

The intrusive rocks (mostly felsic magmatic) are considered as pre-tectonic (e.g. Nchanga Granite, Lusaka Granite, affecting the basement) as well as syntectonic (Porada and Berhorst, 2000) to the Katanga Supergroup (e.g. Ngoma Gneiss).

Print this page